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G is the amplitude of the linear gradient, and B, is the amplitude of the applied 
RF field. Both are functions of time. The small-tip approximation assumes that the 
longitudinal magnetization A4, is approximately equal to its equilibrium value A4(, , 

M Z = MO = constant. PI 

This is true provided the excitation pulse rotates the magnetization vector M only a 
small angle from the +z axis. Under this assumption the first two components of Eq. 
[l] can be decoupled from the third. Define the transverse magnetization as 

MXy = M, + iMy, 

and the applied RF field as 

B1 = B,,X + iB1,, . 141 

Then the first two components of Eq. [l] can be written as the single complex differ- 
ential equation 

kXy = -irG.xM,, + irBIM,,. 151 

If the system is initially in the state (0, 0, MO) this differential equation can be solved 
for the final magnetization at time T, 

I- T 
W,(x) = irM0 

B1(t)e-iyX.~~:G(S)dSdt. 
Jo 

This equation gives the transverse magnetization as a function of the applied RF and 
gradient fields, both of which are in general time-varying. We will be examining the 
implications of this equation in detail. 

k-space interpretation. If we define a spatial frequency variable k(t) as 

k(t) = -y 
s 

T 
G(s)ds [71 I 

then Eq. [ 61 may be rewritten 

s 

T 
M,,(x) = irM0 B,(t)e =.W+jt. PI 

0 

Note that in Eq. [ 71 the integration is from the time t to the time of the end of the 
excitation pulse. The function k(t) parametrically describes a path through spatial 
frequency space. We can write the exponential factor as an integral of a three-dimen- 
sional delta function 

M,,(x) = i+yMo lT B,(t) l 36(k(t) - k)e’“‘ldkdt. 

Interchanging the order of integration, 

[91 

T 
M,,(x) = irMo Bl(t)36(k(t) - k)dt [lOI 
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The inner integral over time is the three-dimensional path which we will designate 

p(k) = ST B,(t)3c3(k(t) - k)dt. [III 
0 

This expression shows the explicit weighting of k space by the RF excitation B, ( t) . 
It also contains an implicit weighting due to the varying velocity with which k space 
is scanned. To make this weighting explicit we normalize the delta function by multi- 
plying it by the derivative of its argument. To preserve the equation we must then 
divide by the same factor. The result is 

p(k) = s oT ,;;;;, {36(k(t) - k) lb) 1 )dt, iI21 

where we have used the fact that k(t) = yG( t) and assumed that B,(t)/ ] -rG( t) ( is 
finite. The term in braces is now a unit delta function. Equation [ 12 ] shows that the 
path scans k space weighted by B,(t)/ ] rG( t) I. The expression for the transverse 
magnetization resulting from the selective excitation is then 

wy(x) = irM0 s 
p( k)ei”‘kdk. [131 

K 

The resulting transverse magnetization is simply the Fourier transform of the 
weighted k-space trajectory. 

A simpler and conceptually useful expression may be obtained for the case where 
the k-space trajectory does not cross itself. For this case we define a spatial weighting 
function 

B,(t) 
W(k(t)) = IrG(t) I . [141 

W(k) is left unspecified for k not on the k(t) trajectory. The idea is that B, (t)/ 
1 yG( t) I is a moving sample of a time-independent function W(k) . Later when we 

are concerned with designing selective excitation pulses this will become the Fourier 
transform of the desired localization. Substituting this expression back into Eq. [ 121 
results in: 

p(k) = j-’ W k W ){3WGt) - k) lh) I )dt 
0 

zz II’(k)~‘{36(k(t)-k)~k(t)]}~t. 1151 
0 

Here we have used the fact thatf(x)d(x - x0) =f(xo)S(x - x0). In Eq. [ 151 the path 
p(k) factors into two terms, the spatial weighting function W(k) and a parametric 
description of the unit weight trajectory 

S(k) = lr {36(k(t) - k) Ii(t) I}dt. 1161 

S(k) may be thought of as a sampling structure. It determines both the area and the 
density of the k-space representation. The expression for the transverse magnetiza- 
tion given in Eq. [ 131 may now be rewritten as 
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RFA 

FIG. 1. Conventional slice-selective excitation. A constant slice-select gradient is applied while the RF 
waveform is played out. At the end of the RF the gradient is reversed to refocus the selected slice. The area 
of the refocusing lobe is one-half the area of the slice-select lobe in the small-tip-angle case. 

KJAX) = hM0 s W(k)S(k)ei”~kdk. [I71 
K 

The transverse magnetization is the Fourier transform of a spatial frequency weight- 
ing function W(k) multiplied by a spatial frequency sampling function S(k) . We will 
return to this expression when we consider the design of selective excitation pulses. 

APPLICATIONS OF THE k-SPACE INTERPRETATION 

The k-space interpretation of small-tip excitation immediately suggests several new 
pulse sequences, two of which will be presented here. Before proceeding with these 
we will illustrate the concepts involved by applying the new formalism to a familiar 
example. 

Conventional slice-selective excitation. The conventional slice-selective excitation 
pulse sequence is shown in Fig. 1. A constant gradient is applied as a sine RF wave- 
form is played out. This produces an approximately rectangular slice profile. After 
the RF waveform has ended the gradient is reversed to refocus the selected slice. In 
the small-tip case the area under the refocusing lobe is one-half the area under the 
slice-select lobe. 

The k-space interpretation is illustrated in Fig. 2. k-space is scanned linearly as the 
RF field is applied. Note that in Eq. [ 71 the location in k space at a time t is the 
integral of the remaining gradient waveform. Hence the origin in k space is reached 
when the remaining gradient integrates to 0. This occurs halfway through the slice- 
select gradient lobe, and hallway through the RF excitation. The RF weighting is then 

FIG. 2. k-space interpretation of the pulse sequence in Fig. 1. (1) The slice-select gradient scans k space 
linearly while the RF waveform is applied. (2) The refocusing lobe shifts the origin of k space back to the 
middle of the symmetric RF weighting. 
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RFF 

GL 
FIG. 3. An inherently refocused slice-selective excitation pulse sequence. This is similar to the pulse 

sequence in Fig. 1. It differs in that there is an additional negative gradient lobe before the slice-select 
gradient, and in that RF is applied the entire time the gradients are on. The RF polarity is the same for 
either gradient polarity. 

centered in k space and is symmetric about the origin. The slice profile, which is the 
Fourier transform of this RF weighting, is in phase. During the refocusing lobe no 
RF is applied. Its purpose is simply to shift the k-space origin back to the m iddle of 
the RF excitation. 

Inherently refocused pulses. This description of the conventional slice-selective ex- 
citation suggests several generalizations. First, RF can be applied throughout the exci- 
tation pulse sequence provided the desired weighting of k space is still achieved. Sec- 
ond, any RF and gradient waveform pair that ends at the m iddle of a symmetric 
weighting of k space will automatically be refocused. 

A simple example of this is the pulse sequence shown in Fig. 3. Again, k space is 
weighted by a sine as it was in the conventional case. The k-space interpretation of 
this pulse sequence is shown in Fig. 4. The first gradient lobe scans k space from the 
origin in the negative direction to kmin . During this lobe half of the sine waveform is 
applied, starting at zero frequency. The second gradient lobe scans k space from kmin 
to &, while the whole sine waveform is played out on the RF. The last gradient lobe 
scans k space from k,, back to the origin while the last half of the sine waveform is 
applied, ending at zero frequency. The result is that k space is symmetrically covered 
twice by the RF excitation. Since the k-space trajectory ends at the m iddle of this 
symmetric weighting the selected slice is in-phase. 

I I I * 

kmin 0 k k max 

FIG. 4. k-space interpretation of the pulse sequence in Fig. 3. (1) During the first gradient lobe the 
negative part of k-space is weighted by half of the sine waveform. (2) During the second gradient lobe the 
whole k-space interval is weighted by the sine waveform. (3) The third lobe returns to the origin while the 
other half of the sine is applied. The result is that k space is covered twice by the RF excitation. 
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This pulse sequence is very similar to the conventional slice-selective excitation 
pulse sequence discussed in the previous subsection. If the RF is turned off during 
the first and last lobes, the two are exactly the same. However, by scanning k space 
twice the RF amplitude required is halved, the peak RF power is quartered, and the 
total RF power is halved. One disadvantage of this pulse is some sensitivity to chemi- 
cal shift. 

Slice profiles for this pulse are given in Figs. 5 and 6. These were obtained by nu- 
merical integration of the Bloch equation. Figure 5 shows the slice profile for a 30” 
tip angle. This is approximately the limit of the small-tip-angle regime. The transverse 
magnetization is almost entirely in the imaginary component, MY. This indicates the 
slice is very well refocused. Figure 6 shows the slice profile for a 90” tip angle. This is 
well beyond the small-tip-angle regime. However, the slice profile is still reasonably 
well focused. Improved refocusing could be obtained with minor modifications of 
the gradient amplitudes. Even though this pulse sequence was designed using small- 
tip-angle arguments it still works well for tip angles on the order of 90”. 

This approach also has the practical benefit of indicating how to utilize noncon- 
stant slice-select gradients. The abrupt transitions required for the gradient waveform 
in Fig. 3 are difficult to produce practically. This is not a fundamental problem, since 
the critical quantity is the weighting of k space. This is the ratio B, (t)/ I -rG( t) I. Any 
gradient waveform can be used provided it covers the necessary part of k space, and 
provided the RF waveform is compensated to produce the desired weighting. This is 
a special case of the more general variable-rate selective excitation principle VERSE 
described in (6). 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

Position 

FIG. 5. Slice profile resulting from the pulse sequence in Fig. 3. The tip angle here is 30” which is approxi- 
mately the limit of the small-tip approximation. The M, component of the transverse magnetization is 
small, indicating the slice is well refocused. 
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FIG. 6. Slice profile for the same pulse sequence as Fig. 5, but with the excitation scaled to produce a tip 
angle of 90”. This is well beyond the small-tip-angle regime for which the pulse was designed. Nonetheless, 
the pulse is still reasonably well refocused across the slice. This can be improved by minor adjustments to 
the gradient amplitudes. 

Two-dimensional selective excitation. In the previous two subsections we have 
been talking about the familiar problem of selectively exciting a slice. In this subsec- 
tion we describe how this can be extended to two dimensions. An approach has re- 
cently been presented for achieving two-dimensional spatial localization for spectros- 
copy ( 7-9)) by design of selective two-dimensional 180” pulses. Our approach here 
differs in two respects. First we are concerned with designing inherently refocused 
two-dimensional selective excitation pulses. Second, we show here an analytic ap- 
proach for designing and analyzing the required RF and gradient waveforms. 

The problem of a spatially localizing excitation in two dimensions exactly parallels 
the problem of reconstructing an image from data taken with time-varying gradients 
( 1, 2, 10-15). In both cases the goal is to cover some region of spatial frequency 
space by a gradient-controlled trajectory. And, in both cases the resolution element or 
selective volume is the Fourier transform of this weighted trajectory. 

Almost any of the methods that have been proposed for producing an MR image 
from one FID can also be used to produce two-dimensional spatially localized excita- 
tion. These include echo planar and its variations ( 10, 1 I ), constant-angular-rate 
spirals (2,14), constant-velocity spirals ( 15)) and square spirals ( 15). The difference 
is that instead of acquiring data as the gradient field is applied, an RF field is applied 
to achieve the desired spatial frequency weighting. Note that as in the previous subsec- 
tion, if k space is weighted symmetrically and the k-space trajectory ends at the origin, 
then the selected volume is automatically refocused. 

The design of a two-dimensional selective excitation starts by choosing a spatial 
frequency weighting function D(k) whose Fourier transform is the desired localiza- 
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tion. Referring back to Eq. [ 171 we see that we want to find a spatial frequency weight- 
ing function W(k) and spatial frequency sampling function S(k) such that 
W( k)S( k) is a good approximation to D(k). The choice of S(k) corresponds to 
choosing a k-space scanning trajectory, like the echo-planar or the square-spiral tra- 
jectories mentioned above. The requirements for the trajectory are exactly the same 
for excitation as they are for imaging. The trajectory should uniformly cover the part 
of k space where D(k) has significant energy, and it should cover this region with 
sufficient density to limit aliasing. Given that S(k) fulfills these requirements we can 
let the weighting function be the desired spatial frequency weighting lV( k) = D(k). 

As an example we will describe the design of a circularly symmetric Gaussian local- 
ization excitation. The desired spatial frequency weighting D(k) is then also a circu- 
larly symmetric Gaussian function. 

For a k-space trajectory we choose a constant-angular-rate spiral. This is illustrated 
in Fig. 7. Since we want to end up at the origin at the end of the pulse we start out at 
the edge of the spiral end and come in. This assures that the slice will be refocused 
automatically. We could also start at the middle and spiral out, but then we would 
need a refocusing lobe at the end. This k-space trajectory can be written as 

k,(t) = A 1-s COST 
i 1 

27rnt 

ky(t) = A 1 -f siny, 
( 1 

2mt 
1181 

where the spiral has n cycles in a time T. In Fig. 7 y1 = 8. In the radial dimension k 
space is covered discretely. This will produce radial sidelobes, exactly analogous to 
aliasing due to a limited sampling rate. The number of cycles II determines how far 

-0.6 - \ 

-0.8 - 

FIG. 7. k-space trajectory for a spiral two-dimensional selective excitation. The spiral is started at the 
outer edge and ended at the middle so that the selected volume will lx inherently refocused. No refocusing 
gradient lobes are required. This spiral corresponds to Eq. [ 181 with n = 8. 
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out the first aliasing sidelobe will be. The factor A in Eq. [ 18 ] determines the size of 
the spiral in spatial frequency. The gradient waveforms that produce this k trajectory 
areG(t) = (ll-v)k(O, 

G,(t)= -$[2m( 1 -ly)sin~+cos~] 

Gy(i)=$[2m( 1 -+)cosy--sin?]. ]I91 

These are plotted in Fig. 8. 
The desired spatial frequency weighting is a circularly symmetric Gaussian func- 

tion, which can be written as 
D(k) = ,e-82(k;+k;)/A2. PO1 

The quantity (Y scales the tip angle, while p determines the spatial resolution of the 
selective volume. Given that the spiral adequately samples k space, we let W(k) 
= D(k) . Then using Eq. [ 141 we can calculate the required RF waveform, 

h(t) = J+‘(k(t)) IrG(f) I 

= y(y $ e-82U-M-)2 \:l[2nn( 1 -q+ 1. 

This is plotted in Fig. 9 for the case where p = 2. 

1211 

Time 
FIG. 8. Gradient waveforms that will produce the k-space trajectory shown in Fig. 7. These are given 

mathematically by Eq. [ 191 with n = 8. 
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Time 
FIG. 9. RF waveform that will produce a cylindrical Gaussian weighting of k space when applied with 

the gradient waveforms shown in Fig. 8. This waveform is given by Eq. [21] with @ = 2. 

The selective volume that results from this gradient and RF combination is plotted 
in Figs. 10 and 11. Figure 10 is a surface plot of the real and imaginary part of MXY 
resulting from a 30” tip angle. Note that there is virtually no real component. The 
resulting magnetization is all along MY. This means the volume is very well refocused. 
Also note that the sidelobes are very low. Figure 11 is a surface plot of the excitation 
scaled to a 90” tip angle. This is well beyond the small-tip-angle regime. The slice is 
again very well focused, and again the sidelobes are very low. This excitation pulse 
performs very well for tip angles on the order of 90”. 

FIG. 10. Surface plots of the selective volume produced gradient waveform in Fig. 8 with the RF wave- 
form in Fig. 9. The RF is scaled to produce a tip angle of 30”. The left plot is A4,, and the right plot is M,,. 
Note that virtually all of the transverse magnetization is in M,,, meaning the selected volume is very well 
refocused. Also the sidelobes are very low. 
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FIG. Il. Surface plots for the same RF and gradient waveforms as in Fig. 10, but with the RF scaled to a 
tip angle of 90”. This is well beyond the small-tip-angle regime. In spite of this the slice profile is very good. 
The phase of the transverse magnetization is very well focused, and the sidelobes are low. 

The selective volume can also be shifted to other spatial positions. To see this con- 
sider the effect of the following RF waveform: 

B;(t) = Bl(t)e-i%.k(‘). P21 
Substituting this into Eq. [ 81, 

s T 

= YMO &(tk 
i(x-xob W)dt. 

0 

The excitation has been shifted spatially to the position x0. 
A concern with these two-dimensional selective excitation pulses is spectral sensi- 

tivity. The k-space analysis can easily be extended to include an additional spectral 
axis. This is beyond the scope of the present paper. Here we will simply note the 
nature of off-resonance effects. First, the duration of these pulses will result in some 
spectral selectivity. Second, there is a phase shift proportional to offset frequency. 
This can be refocused using a 180” pulse, just as a constant slice-selective excitation 
pulse is refocused by reversing the slice-select gradient. Third, the spatial selectivity 
of the pulse degrades with increasing offset frequency. This is a result of the particular 
k-space trajectory chosen. 

As an example we calculated the selective volume corresponding to Fig. 11 with a 
half cycle off-resonance shift over the duration of the pulse. This represents approxi- 
mately 1 ppm shift for an 8 ms pulse at 1.5 T. The result is shown in Fig. 12. We have 
assumed refocusing with a 180” pulse followed by a delay of 0.45 times the pulse 
length. The M ,, component is relatively unchanged. The principal effect is the pres- 
ence of an M , component. This represents both some loss in resolution and imperfect 
spatial phase coherence. These effects can be reduced by reducing the duration of the 
pulse, or by using a different k-space trajectory. In particular an echo-planar-type 
excitation pulse will suffer almost no resolution degradation, although spectral shift 
will spatially shift the resolution volume in the slow gradient direction. 
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FIG. 12. Selective volume resulting from the same excitation as in Fig. 11, but with a half cycle off- 
resonance shift over the duration of the pulse. This corresponds to a 1 ppm shift for an 8 ms excitation 
pulse at 1.5 T. We have assumed the volume has been refocused with a 180” pulse. The My component is 
relatively unaffected from Fig. 11. The principal effect is a nonzero M, representing some loss in resolution 
and imperfect phase coherence across the volume. 

EXPERIMENTAL RESULTS 

The selective excitation pulses described in the previous section are interesting 
from a theoretical viewpoint. To show that such pulses are useful practically, the two- 
dimensional selective excitation pulse was implemented on a 1.5 T General Electric 
Signa system. The system is stock in all relevant aspects and does not have shielded 
gradient coils. 

The pulse sequence is illustrated in Fig. 13. The two-dimensional selective excita- 
tion is applied to the x and y axes. This will excite a cylinder along the z axis. A slice 

RF a 

Time, ms 

FIG. 13. Pulse sequence used to demonstrate the two-dimensional selective excitation pulse. The two- 
dimensional pulse is applied along the x and y axes exciting a cylinder along the z axis. A selective 180 
forms a spin echo of a slice of this cylinder. The resulting disk is then imaged with a conventional spin- 
warp pulse sequence. 
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of this cylinder is selected using a slice-selective 180” refocusing pulse. The resulting 
disk is then imaged using a conventional spin-warp imaging sequence. 

An image of the localized volume is shown in Fig. 14. The phantom is a large 
volume of water doped with Ct.&O4 to a T2 of 200 ms. Also shown is a profile along 
a diameter of the selected volume. The duration of the two-dimensional selective 
excitation was 8 ms, and the maximum gradient amplitude was 0.6 G/cm. The RF 
was scaled to produce a 90” excitation. The field of view is 24 cm, and the width of 
the selected volume is on the order of 3 cm. The first aliasing side lobe due to radial 
sampling is outside of the phantom, which is 28 cm in diameter. 

CONCLUSION 

In this paper we have proposed a new viewpoint for analyzing selective excitation. 
Selective excitation may be considered to be a weighted scan through a spatial fre- 
quency space. The slice profile is simply the Fourier transform of this weighted trajec- 
tory. Although only strictly valid for small-tip-angle excitation, the results for the 
cases considered here hold well at tip angles of 90”. From this viewpoint it is possible 
to propose new types of pulses that would not be readily apparent otherwise. Two that 
were presented here are excitation pulses that are inherently refocused, and excitation 
pulses that are spatially selective in two dimensions. This type of analysis can also be 
extended to other nonspatial axes such as chemical shift and velocity. This will be the 
subject of a subsequent paper. 

FIG. 14. Image of the selected volume resulting from the pulse sequence shown in Fig. 13. Also shown is 
a profile along a diameter of the selected volume. The two-dimensional selective excitation had a duration 
of 8 ms, and a peak gradient amplitude of 0.6 G/cm. The RF was scaled to produce a 90” tip angle. The 
field of view is 24 cm, and the diameter of the selected volume is approximately 3 cm. 
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